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Abstract
We develop a generative model for monophonic melody generation over chord progres-
sions that is based on the long short-term memory neural network. The model takes a
sequence of notes with harmonic context information – a melody – as input and outputs
a note that continues the melody. The encoding of musical data for input and output
of the model is designed to capture the connection between melody and harmony.
An algorithmic approach to key detection is used to extend the model’s harmonic
context to compensate for the lack of key information in datasets. Moreover, harmonic,
rhythmical and creative quality of generated melodies are evaluated with metrics that
quantify musical characteristics. Based on the generative model, the implementation
of a realtime application, that engages the user interactively, is developed.

Zusammenfassung
Wir entwickeln ein Machine Learning Modell für monophonische Melodiegenerierung
über Akkordfolgen, das auf einer long short-term memory neural network Architektur
basiert. Das Modell nimmt eine Melodie – eine Notensequenz mit harmonischem
Kontext – als Input und generiert eine darauf folgende Note, die die Melodie fortführt.
Die Kodierung von Input und Output des Modells hebt die Verbindung zwischen Melodie
und Harmonie hervor. Der harmonische Kontext wird durch die algorithmisch ermittelte
Tonart erweitert. Harmonische, rhythmische und kreative Qualität der generierten
Melodien werden mit Metriken, die musikalische Eigenschaften quantisieren, evaluiert.
Basierend auf dem generativen Modell wird die Implementierung einer interaktiven
Echtzeitanwendung entwickelt.
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1 Introduction
The interest in computer-aided music generation is almost as old as the idea of
computers. Ada Lovelace, who is known for her work on Charles Babbage’s proposed
mechanical general-purpose computer, already noted in 1843 that computers “might
compose elaborate and scientific pieces of music of any degree of complexity”, given
an appropriate encoding of musical data [LM42]. Music lives in the space in which
continuous time and the continuous frequency spectrum collide. The space of music
entails such vast possibilities that it is difficult to know where to even begin to
understand it. Abstractions of music have been designed so that we humans can
write it down, communicate musical ideas and find certain structures in it. Many
patterns have been found by analyzing music from different times and cultures and
students of music theory can learn by applying those patterns. While music theory
covers many concepts that can be described mathematically, a rigorous mathematical
treatment of music is challenging, in particular when dealing with subjective concepts
such as “interesting” or “nice-sounding” melodies. Therefore, we want to investigate
the intersection of applied mathematics and music theory in this thesis.
Machine Learning is a field of research that is based on identifying patterns in

data. The question arises whether Machine Learning methods can help us understand
the complexities of music better. Generative music is an exciting task to study in
this interdisciplinary research field. Recent research has applied Machine Learning to
music generation [BHP17, RV14]. Examples for this include the Flow-Machines project
[GPR16]1, the AI assisted drum sampler Atlas2 and the neural audio synthesis tool
NSynth [ERR+17].
Machine Learning research in melody generation was pioneered by Mozer [Moz91]

with the model “Concert” which composes melodies based on chord progressions with
the help of recurrent neural networks. Further, [ES02] used long short-term memory
networks (LSTMs) for Blues melody generation and [Fra06] used LSTMs for Jazz
melody generation. More recently, [CSG17] used LSTMs to generate Irish folk and
Klezmer melodies. Melodies in the style of the soprano parts of the J.S. Bach chorale
harmonizations were generated in [HN18]. “The Impro-Visor” [GTK10] is a generative
jazz program based on probablistic grammars. In [TK18], another version of the Impro-
Visor based on Generative Adversarial Networks was developed to predict monophonic

1Flow-Machines is an AI assisted music composing system that musicians can use to compose
melody in different musical styles (https://www.flow-machines.com/)

2A software tool that maps drum samples so that similar are near each other in a 2D canvas
(https://www.algonaut.tech/)
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1 Introduction

jazz melodies.
Moreover, the field of interactive melody generation has been researched. A Markov

chain based interactive generator named “the Continuator” was introduced in [Pac10].
In the “Magenta AI duet” [WA16], an LSTM is used to generate melodies interactively
based on human input. The Magenta AI duet is a web application that engages the
user interactively while working with interesting Machine Learning technology on the
back-end. It partially inspired the interactive application developed in this thesis.
However, the Magenta AI duet lacks the employment of the concept of harmony as the
melodies are standalone with no connection to a harmonic context.

A melody by itself is just a sequence of notes, but within a song, i.e. in a harmonical
context, it can serve various purposes and evoke different emotions. Hence, some musical
concepts can only be investigated if the encoding of melody in a melody generation
model is based on this relationship. Still, many recent papers [HN18, CSG17] deal
with melody generation without considering harmony. This further makes it difficult
to evaluate the quality of generated melodies with metrics that build on music theory.

The main goal of this thesis is to model interactive melody generation with an
emphasis on the musical connection between melody and harmony. We develop a
monophonic melody generation model based on neural networks. It is designed to be
deployed in an interactive web application in which melodies are generated based on
user input and background harmony. Tonality information is added to the encoding
as an extension by utilizing an algorithm for key-detection. To evaluate the musical
quality of the model, generated melodies are analyzed with music theory based metrics.
As our model emphasizes the connection between melody and harmony in the design,
evaluation metrics are able to measure harmonic qualities. Our main objectives are:

Musical Encoding. To be able to feed data into a Machine Learning model, a
suitable data representation is needed. Such representation should encode mono-
phonic melodies and incorporate the connection between melody and harmony.
Commonly used musical data formats should be able to be converted to this
encoding.

Generative Model. A generative melody model should be able to continue a melody
of any length for an arbitrary amount of notes given an inputmelody.

Measuring musical quality. The musical quality of melodies that the model
generates should be measured. To do this, musical concepts need to be quantified.
By quantifying harmonic, rhythmical and creative quality of the melodies, the
strengths and weaknesses of the generated melodies can be analyzed.

Realtime Application. The generative model is deployable in an interactive realtime
application. This application can be used for generating melodies based on various
chord progressions.
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The remainder of the thesis is structured as follows: Chapter 2 will cover basics of
music theory that clarify the vocabulary and the concepts from music used in this
thesis. Chapter 3 will introduce the Machine Learning background for this thesis. In
Chapter 4, a melody generation model, based on the theory of the last two chapters
is developed. Chapter 5 will elaborate on the datasets that are used and how they
are processed to be used for the model. Chapter 6 discusses methods for training and
evaluation of the model by developing metrics to make the melody quality measurable.
Chapter 7 analyzes the evaluation of the model. Chapter 8 elaborates on interactive
generation of melodies within the implemented realtime JavaScript application. Finally,
in Chapter 9 we summarize our findings.
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2 Music theory
In this Chapter we introduce basic concepts of music theory so that we are able to
develop a music theory based model in a concise way. It also aims to serve as an
introduction for readers with little to no background in music theory and is based on
concepts from [Jun01] and [Sch11]. An introduction to basic musical concepts including
the staff notation used in the illustrations can be found in [Sch11]. The visualizations
in staff notation are created with the program MuseScore3. The mathematical plots
are created with the Python libraries matplotlib and seaborn if not indicated otherwise.
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Figure 2.1: The C major scale using quarter notes in the 4/4 time signature in two measures.

The pulse of the music is called beat and establishes the tempo. Beats are usually
divided into groups called bar (or measure). Bars are delimited in the staff notation
by a vertical line. Most commonly, a bar equals 4 beats which is also called 4/4 time
signature or common time. In 3/4 time signature, a bar equals 3 beats. In Figure
2.1, a 4/4 time signature is marked at the beginning of the illustration of 2 bars of
music. A pitch is a sound of some frequency. Frequency is measured in Hertz (Hz)
which is a measurement of cycles per second of the sound wave (1Hz = 1 cycle per
second). High frequency sounds produce high pitch and low frequency sounds produce
low pitch. A note is a musical sound that is characterized by pitch and duration.
Durations are represented as fractions of a whole note. A whole note has the length of
four beats. Examples include a quarter note, an eighth note and a sixteenth note. A
dotted note is a note with a duration of 1.5 times the normal duration, for example
a dotted quarter note has the length of a quarter note and an eighth note combined.
A triplet is a rhythm playing three notes in the space of two. A common example
is the eighth note triplet which has the duration of 1/12th of a whole note. Three
eighth note triplets make up a quarter note which can be separated into two eighth
notes. A beat is synonymous with a quarter note. Musical notes in this work are in
the twelve-tone equal temperament. In this tuning, the frequency spectrum is divided
by notes where the frequencies of each two adjacent notes have equal ratios of 12

√
2.
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2 Music theory

This is the currently predominant system of musical tuning in Western music used for
pianos, keyboards and guitars. It is an abstraction away from the real spectrum of
possible notes which is a continuous spectrum from [0,∞). It originates from classical
music in the 18th century. The twelve notes are C, C]/D[, D, D]/E[, E, F, F]/G[, G,
G]/A[, A, A]/B[ and B. The ]-symbol means one half-step up (augmented) while the
[-symbol means one half-step down (diminished). Two notes with frequencies that are
whole number multiples of each other are represented by the same letter but a different
number, e.g. A4=440Hz and A5=880Hz=2×440Hz. These two notes with the same
letter are said to be in the same pitch-class and can be considered as the same notes
but with different pitches. To ease notation, we will leave out the number when talking
about notes if it is not important in the context. Different to other tuning systems, in
this case there are enharmonic (or enharmonic equivalent) notes such as F] and G[.
This means that they are spelled differently but are of the same frequency, so therefore
have the same pitch.
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Figure 2.2: The C minor scale with the notes C4, D4, E[4, F4, G4, A[4, B[4, C5.

A scale is any set of musical notes ordered by fundamental frequency or pitch. The
scale containing all possible notes within one octave is called the chromatic scale. Scales
can be defined in steps. The step from one note to the next in the chromatic scale,
e.g. C to C] is called a half-step. The full-step is two half-steps, e.g. C to D. The
most important scales in western music are the major and the minor scales. The major
scale is defined by the steps: full-full-half-full-full-full-half which results for C major in
the pitch-classes C, D, E, F, G, A, B, C as depicted in Figure 2.1. The minor scale
is defined by the steps: full-half-full-full-half-full-full which results for C minor in the
pitch-classes C, D, E[, F, G, A[, B[, C, as depicted in Figure 2.2. The A minor scale
consists of the pitch-classes A, B, C, D, E, F, G, A and therefore the same pitch-classes
as C major. The corresponding minor scale to a major scale is called relative minor
and has its root note 3 semitones below the major root note. C major and A minor
scales are often used as easy examples because they represent the white keys on the
piano keyboard. To ease notation, we will use pitch for pitch-class in the rest of the
thesis if the context is clear. An interval is the distance between two notes. Intervals
are notated by the quality (perfect, major, minor) and number (unison, second, third,
etc.), e.g. perfect fifth or major third as shown in Table 2.1.
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Interval name Half-steps Example
perfect unison 0 C4 - C4
minor second 1 C4 - C]4
major second 2 C4 - D4
minor third 3 C4 - D]4
major third 4 C4 - E4
perfect fourth 5 C4 - F4
tritone 6 C4 - F]4
perfect fifth 7 C4 - G4
minor sixth 8 C4 - G]4
major sixth 9 C4 - A4
minor seventh 10 C4 - A]4
major seventh 11 C4 - B4
octave 12 C4 - C5

Table 2.1: The names of the intervals within one octave.

Consonance and Dissonance are categorizations of intervals where consonant
means pleasant sounding and dissonant means unpleasant sounding. As these are sub-
jective concepts that are influenced by different musical traditions, cultures, styles, and
time periods we cannot define them in this context in a “correct”, universally accepted
or exhaustive way. Instead we will provide some characterizations of consonance that
are reasonable in harmonic music theory.

Tonality (Key) is the arrangement of pitches and/or chords of a musical work
in a hierarchy of perceived relations and stabilities. Tonality implies a tonal center
(named “tonic”). Tonality and key are used interchangeably. Examples of tonalities
are A minor or C major. In music theory the keys are usually ordered in the Circle of
Fifths instead of chromatically, as depicted in Figure 2.4. Keys next to each other on
the circle are similar in the sense that their scales only differ by one note, i.e. one note
is moved a half-step up or down to change the key to a neighbouring one. Furthermore
the fifth is often seen as the most consonant interval after the octave and the unison
which brings another interesting view to the circle of fifths as an ordering of consonant
pitches, as opposed to an ordering of similar tonalities. In some music the tonality is
changed throughout the piece. In this work, however, we will assume that one piece of
music has one tonality.
A melody is a sequence of N ∈ N notes. Musically, a melody by itself implies a

tonality and can even imply various different, but somewhat related, harmonic contexts
as described in [Jun01, Ch. 6]. Thus, it is unclear what harmonic context is intended
by the melody and it is difficult to measure the consonance of a melody as in one
harmonic context it sounds consonant and in another it does not. Therefore, we will
always consider a melody within the context of a tonality in this thesis. To describe
tonality more concisely we introduce chords.
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2 Music theory
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Figure 2.3: The C major chord.

Chords consist of multiple simultaneously played notes. Some of the terminology
that we introduced for keys are also used for chords in a slightly different but very
related context. A major chord is made up of the first, third and fifth note of a scale.
Such a major chord can also be constructed by placing a minor third interval on top of
a major third interval starting at a root note. The C major chord is made up of the
pitches C, E and G where C and E are a major third and E and G are a minor third,
as can be seen in Figure 2.3. A minor chord is built by stacking a major third on top
of a minor third and an example for this is the C minor chord which consists of the
notes C, E[ and G. By combining these third intervals with different notes from one
scale, one can create chords that fit well with the scale. In the C major scale we can
for example make a D minor chord with the notes D, F and A. Chord progressions are
sequences of chords and provide a harmonic context in a piece of music.

Figure 2.4: The Circle of Fifths visualizes an ordering of all pitch-classes. Two neighboring
pitch-classes make up a perfect fifth interval. Its structure is also applicable to
chords and keys. Image taken from [Wik08].
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3 Machine Learning Background
Music is often said to be similar to language. Both music and language have a notation
system and are used sonically. Both are in essence sequential and vary from culture to
culture. Therefore, it is of interest to explore how techniques from the field of natural
language processing, which relies heavily on Machine Learning, can be applied to
melody generation. The following chapter introduces relevant concepts from Machine
Learning with the main sources being the Deep Learning textbook by Goodfellow et
al. [GBC16] and the textbook by A. Graves [Gra12]. The research area of Machine
Learning studies machines and computer programs that are able to learn to perform a
specific task without using explicit instructions, but relying on patterns and inference
instead. A widely used definition is given by Tom M. Mitchell in [Mit97]:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.”

Experience E is presented to the Machine Learning algorithm in form of datasets.
The task T is based on discovering patterns and structure in the dataset. Common
examples of the task T are to structure the dataset or to make predictions based on it.
Machine Learning tasks with labelled training data, which consists of input-label pairs,
are referred to as supervised learning. This is distinct from reinforcement learning,
where scalar reward values are provided during training and unsupervised learning,
where no additional information is provided. This thesis only discusses methods of
supervised learning.

Let X be a non-empty set of training data and Y a set of labels. The learning algo-
rithm takes a labelled training dataset (or training corpus) S = {(x1, y1), ..., (xn, yn)} ⊂
X × Y and outputs a function f ∈ YX , called hypothesis, that predicts the label
for (unseen) data instances. A learning algorithm can therefore be seen as a map
A : ∪n∈N(X × Y)n → YX . It is assumed that the training data as well as the future
(unseen) data is independent and identically distributed from some unknown probability
measure P on the product space X × Y. The performance of the hypothesis f is
measured with respect to a suitably chosen loss function L, that measures “how far”
f(x) is from the true label y.
A loss function is defined as a function L : Y × Y → [0,∞) with the property

L(y, y) = 0 for all y ∈ Y . The goal of learning is generalization, which is defined as the
ability of the hypothesis to perform well on unseen test data. Generalization is assessed

9



3 Machine Learning Background

by measuring the performance of the hypothesis w.r.t the loss function on a from S
disjoint test dataset S ′ ⊂ X ×Y which is not used for training. In some cases an extra
validation set S ′′ ⊂ X ×Y disjoint from both S and S ′ is used to validate performance
during training while tuning the algorithm’s hyperparameters. Hyperparameters are
parameters for the model setup as well as the optimization algorithm setup that are
set before the learning starts.

By minimizing the loss on the training dataset, the learning algorithm improves the
accuracy of correctly predicting the labels from the training data.

accuracy = number of correct predictions
number of predictions

The goal of learning is to improve the hypothesis’ accuracy of predicting the correct
test data labels as well as correct training data labels. Optimizing the parameters of
the hypothesis on the training set does not necessarily mean improved accuracy on
the test set. The phenomenon of high accuracy on training set and low accuracy on
test set is called overfitting. In the case of overfitting, the hypothesis’ parameters are
optimized on the training set but do not generalize onto unseen data such as the test
set. The other extreme is underfitting. Here, the hypothesis is not complex enough
to capture structure in the data and performs bad on training and test data. One
possibility to find a balance between overfitting and underfitting, is to restrict the class
of functions from which the minimization picks the hypothesis, as exemplified in Figure
3.1. Instead of minimizing over YX we choose a function class F ⊂ YX that is suitable
for the task and the data.

3.1 Classification
This thesis deals with a subset of supervised learning problems called classification
problems in which training data is chosen to be X = Rd and the label space is Y = RK .
From the label space a discrete subset of labels Y ′ = {C1, ..., CK} is defined as the set
of possible target labels, also called classes. Here, Ck denotes the k-th unit vector in Y .
The training dataset S = {(x1, y1), ..., (xn, yn)} ⊂ X × Y ′ consists of training samples
with labels in Y ′. The classifier is a function f : X → Y ′. We model the classifier
with conditional probabilities p(Ck|x) for the K classes given the input x and the most
probable class is chosen by the classifier f(x):

f(x) = arg max
k∈[K]

p(Ck|x) (3.1)

This way, the output of the learning algorithm is a function in p ∈ YX with each
dimension p(x)k := p(Ck|x) for k ∈ [K]. This is called probabilistic classification. Here,
the relative magnitude of the probabilities can be used to determine the degree of
confidence of the classifier.
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3.1 Classification

Figure 3.1: Overfitting and underfitting visualization. Assume we want to solve the famous
X-OR problem of separating the points in the figure on the top left. The function
class of linear functions on the top right cannot capture the complexity of the
problem and underfits. On the bottom left, a hypothesis function, which is too
complex, overfits the problem. It separates the points in the figure perfectly
but would not generalize to new points added to the respective quarters. The
bottom right shows a function that separates the data points as well as being
able to separate newly added data points correctly.

Now let θ denote a set of parameters and fθ be the probabilistic classifier dependent
on those parameters θ. Then fθ yields a conditional distribution p(Ck|x, θ) over the
class labels Ck given input x. The product over the i.i.d. dataset S

p(S|θ) =
∏

(x,y)∈S
p(y|x, θ)

represents the likelihood of the dataset given the hypothesis fθ. The maximum
likelihood estimate of this probability is given by

θML = arg max
θ
p(S|θ) = arg max

θ

∏
(x,y)∈S

p(y|x, θ)

To simplify notation we will from now on write p(y|x) for p(y|x, θ) and implicitly
assume y is predicted for fθ dependent on θ.
For finding θML it is convenient to minimize a maximum-likelihood loss function

L(S) defined as the negative logarithm of the probability assigned to S by the classifier

L(S) := − ln p(S|θ) = − ln
∏

(x,y)∈S
p(y|x) = −

∑
(x,y)∈S

ln p(y|x) (3.2)

The loss function therefore decomposes as a sum over the training samples and we set
L(x, y) = − ln p(y|x). This is a common characteristic of loss functions in the field of
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3 Machine Learning Background

Machine Learning that can be computationally beneficial for optimization [GBC16, Ch.
8]. The loss function L is specifically chosen to be differentiable. Note that minimizing
of − ln p(S|θ) is the same as maximizing p(S|θ) since the logarithm is a monotonically
increasing function, i.e. the maximum of p(S|θ) occurs at the same value θ as the
minimum − ln p(Sθ). The application of the logarithm makes it easy to derive the loss
function. For

L(x, y) = − ln p(y|x) (3.3)

we have

∂L(S)
∂θ

=
∑

(x,y)∈S

∂L(x, y)
∂θ

(3.4)

3.2 Sequence classification
The goal of sequence classification is to assign labels to sequences of input data. What
distinguishes such problems from the traditional framework of supervised pattern
classification is that data points in sequences cannot be assumed to be independent.
Instead, both the inputs and the labels form strongly correlated sequences [Gra12].
The training set S is independently drawn from the fixed distribution P on X × Y ′.
Let (Rd)∗ be the set of all sequences in Rd of any length T ∈ N. The input space
X = (Rd)∗ is the set of all sequences of d-dimensional vectors and the output space
Y ′ is the set of all possible classes. The task is to use S to train a sequence labelling
classifier f : X → Y ′ to label the sequences in the test set S ′ ∈ X ×Y , which is disjoint
from S, as accurately as possible. For an input sequence x = (x1, ..., xT ) we want to
predict a label y ∈ Y ′ and the output of the a classifier f(x) = arg maxk p(Ck|x) is as
before. Each vector xt is said to be at time-step t ∈ [T ].

3.3 Fully Connected Neural Networks
State-of-the-art results in sequence learning tasks rely on recurrent neural networks,
which are a class of (artificial) neural networks (NNs) [Gra13]. This section serves
as a general introduction to fully connected neural networks before recurrent neural
networks are explored in section 3.4. A neural network can be thought of as a function

fθ : X → Y

of the function class F of neural networks that takes a data vector x and outputs a
prediction ŷ with X = Rd and Y = RK . The goal of a neural network is to approximate
a function f ∗(x). In our case this function is a classifier f ∗(x) = y where y ∈ Y ′ is a

12



3.3 Fully Connected Neural Networks

category. This function fθ is called a network because it is made up of concatenations
of functions. These functions include affine functions of the form

g(x) = Wx+ b

for x ∈ X ,W ∈ Rh×d, b ∈ Rh and activation functions, e.g. the hyperbolic tangent
activation or the sigmoid activation functions:

tanh(x) := (tanh(x1), ..., tanh(xd))T ,
σ(x) := 1/(1 + e−x),

for x ∈ X . Activation functions are, if not stated otherwise, applied element-wise. A
layer consists of the concatenation of an affine function and an activation function, for
example

σ(g(x)) = σ(Wx+ b)

The values in W and b make up the set of learnable parameters θ (also called weights
and biases). Learning is the process of optimizing the parameters θ so that fθ best
approximates f ∗. If a neural network is for example composed as

fθ(x) = f (3)(f (2)(f (1)(x))),

then f (1) is called the first layer, f (2) the second layer and so on. The length of this
chain of layers is called the depth of the network, which is where the term “deep
learning” comes from [GBC16]. The final layer is called the output layer, while the
previous layers are called hidden layers. The process of feeding the inputs through the
neural network is also called forward propagation.

In classification tasks, a common choice for the nonlinear part of the output layer is
the softmax function. softmax : RK → RK is defined for k ∈ [K] as

softmax(z)k := ezk∑K
i=1 e

zi
.

This normalizes the K-dimensional vector and effectively turns it into a K-dimensional
discrete probability distribution. A 1-of-K encoding represents the label class y as a
one-hot vector (binary vector) with all elements equal to zero except for element k,
corresponding to the correct class Ck, which equals one. For example for K = 3 and
the correct class C2, the label y is represented as (0, 1, 0). We want to maximize the
likelihood for the correct prediction, so with

p(Ck|z) = ŷk = softmax(z)k

we can rewrite the probability for the correct label y ∈ Y ′ as

p(y|x) =
K∏
k=1

ŷyk
k (3.5)

13



3 Machine Learning Background

Substituting 3.5 into 3.3 yields the cross-entropy loss function

L(x, y) = −
K∑
k=1

yk ln ŷk (3.6)

for a sample (x, y) with y being the one-hot label and ŷ the output of the softmax
function.

x1

x2

x3

b(1)

h1

h2

h3

b(2)

y1

y2

y3

Hidden
layerInput Output

layer

Figure 3.2: A fully connected neural network with 3-dimensional input, one 3-dimensional
hidden layer and a 3-dimensional output layer.

For instance, consider a fully connected neural network with one 3-dimensional
hidden layer and 3-dimensional input and output as sketched in Figure 3.2. The hidden
states vector is calculated by an affine transformation of the input vector followed by a
nonlinear activation function g

h = g(W (1)x+ b(1)),

where W (1) ∈ R3×3, b(1) ∈ R3. Here we can for example choose g = tanh as the
(element-wise) activation function. The output ŷ is obtained by another layer of affine
transformation and with softmax activation

ŷ = softmax(W (2)h+ b(2))

where again W (2) ∈ R3×3, b(2) ∈ R3. The output layer again can be interpreted as a
3-dimensional discrete probability distribution. This network can be used for a 3-class
classification task by choosing the class corresponding to the output unit with the
highest probability. Here, the learnable parameters consist of θ = {W (1), b(1),W (2), b(2)}.
By updating the parameters θ with a gradient descent based algorithm the loss

can be minimized so that the neural network fθ best approximates f ∗ based on the
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3.3 Fully Connected Neural Networks

examples from the dataset. Even though neural networks are not convex functions
in general, because of their activation functions, minimization is applied in practice.
Gradient descent relies on the observation that for a differentiable function L it holds
that if

θ(n+1) = θ(n) − λ∇θLθ(n)(S)

for λ > 0 chosen small enough, then

Lθ(n+1)(S) ≤ Lθ(n)(S)

The parameter λ is known as the learning rate. In standard gradient descent the
gradient of the loss of each data sample from S with respect to each weight is computed
before updating the weights. An adaptation of this is called stochastic gradient descent
with mini-batches in which a random subset S1 ⊂ S is used to compute the gradient.

θ(n+1) = θ(n) − |S1|
|S|

λ∇θLθ(n)(S1)

Note that the gradient is scaled by |S1|
|S| to compensate for using less samples. This

method reduces the computation time of an update of the parameters and has shown
to minimize the loss function faster [GBC16, Ch.8].
The loss function is differentiable as a concatenation of differentiable functions.

Hence, the gradient ∇θLθ(n)(S) can be calculated by a method called backpropagation,
which is an application of the chain rule. The term stems from backward propagation
of losses which describes the fact that calculation of the gradients of the neural network
proceeds backwards through the network starting from the output layer.

3.3.1 Backpropagation

The forward and backward propagation algorithms for a fully connected neural network
with a softmax activation on the output layer and activation functions on each previous
layer are depicted below. For simplicity the following algorithms are demonstrated on
one sample (x, y). In practice one uses minibatches, fixed sized subsets of the training
set, to speed up computation. The notation follows [GBC16].
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3 Machine Learning Background

Algorithm 1: Forward propagation
Require :Network depth, l
Require :W (i), i ∈ {1, ..., l}, the weight matrices of the model
Require : b(i), i ∈ {1, ..., l}, the bias parameters of the model
Require : x, the input vector
Require : y, the label vector
h(0) = x
for i = 1, ..., l do

z(i) = b(i) +W (i)h(i−1)

h(i) = g(z(i))
ŷ = h(l)

J = L(ŷ, y)
After obtaining the loss J through forward propagation, the weights and biases are

updated via backward propagation using the Algorithm 2. This computation yields
the gradients of the outputs z(i) of each layer, starting from the output layer and going
backwards to the first hidden layer. The gradients can then be used immediately as
part of a gradient descent update.

Algorithm 2: Backward propagation
Require :Forward propagation
G← ∇ŷJ = ∇ŷL(ŷ, y)
for i = l, l − 1, ..., 1 do

G← ∇z(i)J = G� g′(z(i))
∇b(i)J = G

∇W (i)J = Gh(i−1)T

G← ∇h(i−1)J = W (i)TG

As an example we will calculate the partial derivative of the cross-entropy loss for
the softmax layer. The partial derivative of the cross-entropy loss is

∂L

∂ŷk
= −yk

ŷk

δŷ =
[
∂L

∂ŷk

]
k

= −y � 1
ŷ

δŷ and y are in RK and � denotes the scalar product.
Suppose z is the K-dimensional input vector to the softmax layer of our network.

Note that ŷk for k ∈ [K] depends on every input (into the softmax layer) zi for i ∈ [K].

ŷk = ezk∑K
i=1 e

zi
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For k ∈ [K]

∂L

∂zk
=

K∑
j=1

(
∂L

∂ŷj
· ∂ŷj
∂zk

)

If k = j, with 1k=j =

1 k = j

0 k 6= j
,

∂ŷk
∂zk

= ∂

∂zk

{
ezk∑K
i=1 e

zi

}
=
ezk

(∑K
i=1 e

zi

)
− (ezk)2(∑K

i=1 e
zi

)2

= ezk∑K
i=1 e

zi
− (ezk)2(∑K

i=1 e
zi

)2 = ezk∑K
i=1 e

zi

(
1− ezk∑K

i=1 e
zi

)

= ŷk · (1− ŷk) = ŷk · (1k=j − ŷj)

If k 6= j,

∂ŷk
∂zk

= ∂

∂zk

{
ezj∑K
i=1 e

zi

}
= 0− ezk · ezj(∑K

i=1 e
zi

)2 = −ezk∑K
i=1 e

zi
· ezj∑K

i=1 e
zi

= −ŷk · ŷj = ŷk · (1k=j − ŷj)

Together we have

∂L

∂zk
=

K∑
j=1

δŷj · ŷk · (1k=j − ŷj) =
K∑
j=1

Jij × δŷj

where Jij = ŷk · (1i=j − ŷj)

δx =
[
∂L

∂zk

]
k

= J × δy

In this layer δx, y ∈ RK and J ∈ RK×K .
This illustrates how derivatives are passed backwards to calculate the earlier deriva-

tives in the process of backpropagation. As can be seen, the derivative of the softmax
function has a convenient form that has the advantage of being computationally inex-
pensive to obtain. In practice, functions with minimal computational cost are preferred
as activation functions in neural networks.
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3.4 Recurrent Neural Networks (RNNs)
Musical data in form of melodies is sequential as one note is not independent of the
previous notes in a melody. Fully connected neural networks, however, have not shown
great capability to capture such structure. Moreover, the input dimension of a fully
connected neural network is fixed, so that varying length inputs are only possible by
padding techniques and are still limited by a maximum input length. Recurrent neural
networks, or RNNs ([RHW+]), are a family of neural networks specifically designed for
processing sequential data. The difference to neural networks in the previous section is
that RNNs allow the network to contain cyclical connections. These networks allow
input sequences to be of arbitrary length.

Let n ∈ N be the sequence length which is not fixed, let d ∈ N be the fixed dimension
of one data sample, let h ∈ N be the fixed dimension of the hidden state. For an
input sequence (x(1), x(2), ..., x(n)) with x(t) ∈ Rd for t ∈ [n] we define weight matrices
U ∈ Rh×d, W ∈ Rh×h, V ∈ RK×h and the biases b ∈ Rh, c ∈ RK . The following
equations define the forward propagation of a one-layer RNN at time-step t ∈ [n]:

a(t) = b+Wh(t−1) + Ux(t),

h(t) = tanh(a(t)),
o(t) = c+ V h(t),

ŷ(t) = softmax(o(t)),

(3.7)

with tanh as an element-wise operation, softmax(x)j := exj∑n

i=1 e
xi

for j ∈ [K] and
h(0) = 0, with 0 being the h-dimensional zero vector. Note that the weight matrices
repeat at each time-step as can be seen in Figure 3.3.

U U

W W W
V V

……
unrollW V

U

Figure 3.3: Unrolling of an RNN. In contrast to the fully connected neural network in
Figure 3.2, each node in the figure represents a layer of network units at a single
time-step with time going from left to right. Besides visualizing the cycles in
the network graph (left) one can visualize the ”unrolled“ graph of the recurrent
neural network for an arbitrary amount of time-steps (right).
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3.5 Vanishing and Exploding Gradient Problem

3.5 Vanishing and Exploding Gradient Problem
A big problem with plain RNNs comes from reusing the same weight matrices for each
time-step. The simplified case with

h(t) = W Th(t−1)

can be seen as a recurrent neural network without nonlinear activation function and
lacking inputs x. Suppose W has an eigendecomposition:

W = Qdiag(λ)Q−1.

Then the repeated multiplication of W to the signal

h(t) = (W t)Th0

is equivalent to

W t = (Qdiag(λ)Q−1)t

= Qdiag(λ)tQ−1.

Any eigenvalues λi of magnitude less than one decay to zero and eigenvalues with
magnitude greater than one explode. This turns out to be a problem as these matrices
are used in the computation of backpropagation. A gradient of magnitude close to zero
means that there is little to no signal in the gradient descent iteration so the weights
cannot be updated in a significant way. A gradient of very large magnitude makes it
difficult to fine-tune the parameters as the gradient descent iteration steps become too
large. This problem is known as the vanishing and exploding gradient problem.

3.6 Long Short-Term Memory Networks (LSTMs)
To address vanishing gradients, we can introduce self-loops with gating mechanisms
into the basic RNN propagation so that the gradient can flow for long durations.
The most used type of gated RNN is the long short-term memory (LSTM) model
initially introduced in [HS97] and extended to the current version in [GSC99], by
making the weight of the self-loop conditioned on the context rather than fixed. The
LSTM recurrent network replaces the simple RNN mechanism of applying an activation
function on an affine transformation of the input and the hidden state by a whole
LSTM cell that has more parameters to control information flow.

The forget gate f (t) regulates the self-loop weight by setting the value between 0 and
1. The idea of the forget gate f (t) is to create a vector of weights based on x(t) and
h(t−1) that decide how much of the previous internal state s(t−1) should be kept and
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how much should be discarded by scaling it down. For the input vector x(t) ∈ Rd and
the current hidden vector h(t) ∈ Rh, we have

f
(t)
i = σ

(
bfi +

d∑
j=1

U f
i,jx

(t)
j +

h∑
j=1

W f
i,jh

(t−1)
j

)
for i ∈ [h], (3.8)

where bf , U f ,W f are biases, input weights and recurrent weights for the forget gates,
respectively. This gate gives the model the chance to learn how much of the previous
hidden state accounts to the current state [GBC16, Ch. 10]. As in the basic RNN
the dimensions of weights and biases are U f ∈ Rh×d, W f ∈ Rh×h and bf ∈ Rh. The
external input gate g(t) unit is computed similarly to the forget gate but with its own
parameters:

g
(t)
i = σ

(
bgi +

d∑
j=1

U g
i,jx

(t)
j +

h∑
j=1

W g
i,jh

(t−1)
j

)
for i ∈ [h]. (3.9)

The LSTM internal state s(t) is updated by

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i tanh

(
bi +

d∑
j=1

Ui,jx
(t)
j +

h∑
j=1

Wi,jh
(t−1)
j

)
for i ∈ [h], (3.10)

with b, U,W respectively biases, input weights and recurrent weights into the LSTM
cell with dimensions, analogous to before. To obtain the new internal state, first the
external input gate creates a weight vector that represents the amount of how much
each dimension should get updated. This weight vector scales the tanh gate which
contains values that represent update candidates that could be added to the state.
Finally, the update of the internal state is done by weighting the old internal state
with the forget gate values and adding this to the weighted new candidate values [Ola].
As a last step, the output gate is implemented to scale the current internal state by a
sigmoid activated concatenation of the previous hidden state h(t−1) and the input x(t).
The output h(t) of the LSTM cell is gated by the output gate q(t) with

q
(t)
i = σ

(
boi +

d∑
j=1

U o
i,jx

(t)
j +

h∑
j=1

W o
i,jh

(t−1)
j

)
,

h
(t)
i = tanh

(
s

(t)
i

)
q

(t)
i , for i ∈ [h]

(3.11)

where bo, U o,W o are the biases, input weights and recurrent weights respectively, with
dimensions analogous to before. The initial values are generally chosen as s(0) = 0 and
h(0) = 0 [GBC16, Ch. 10].
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Figure 3.4: Visualization of the LSTM cell with gates as in the formulas. It shows the
inputs x(t), the outputs h(t), the internal states s(t), the forget gate f (t), the
external input gate g(t) and the output gate q(t). Image adapted from [Ola].

Multiple LSTM layers can be stacked by taking the output h(t) of one layer at each
time step as input for the next LSTM layer. The partial derivatives of the loss with
respect to the network weights are calculated with an extension to backpropagation
algorithm called backpropagation through time [WZ95]. The basic idea is to unfold
the recurrent neural network in time and apply backpropagation just as in fully
connected neural networks. The difference to standard backpropagation is that the
same parameters are updated over and over again as each time-step shares the same
parameters. The network can then be trained with a stochastic gradient descent based
algorithm just as a standard neural network. The equations for backpropagation of
LSTMs are developed in [Gra13, Ch. 4.6].

3.7 Determinism of neural networks
After training, the model is deterministic which means that for the same input, it will
always predict the same output. In our case of training a generative model for music,
for the same input melody the same output note is predicted. This stems from the
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fact that we designed the final step of predicting the output label to output the most
likely label. Another way to approach this, is to sample from the output vector by,
once again, interpreting the output as a probability distribution. This results in more
variation but also enables less likely and therefore perhaps less consonant sounding
melodies. It is up to personal preference to decide between sampling and choosing the
most likely next note. In this work we choose the most likely output.
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4 Modelling melody generation
The task of melody generation can be framed in many ways. In this thesis, we aim to
design a model that takes an melody, i.e. a sequence of notes, as input and outputs a
sequence of notes that continues the melody. We will only discuss monophonic melodies
which means at each point in time at most one note is played. This chapter will
elaborate on modelling the input and output of the model and introduce three different
variations of the model. Furthermore, there are different possibilities to encode rhythm
into musical models. We will first discuss different encodings mentioned in [TK18] and
then describe the encoding used in this thesis in detail.
In the time-step encoding, the piece of music is divided into relative time-steps

and at every time-step a vector representing the possible pitches denotes which pitch
is active at that time-step. Relative time-steps mean that the time-step are dependent
on the tempo of the song, i.e. note fractions instead of milliseconds. Often the
measurement of 16th notes is used here, as seen in figure 4.1.

   

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0



Figure 4.1: Example melody in staff notation (left) and time-step encoding (right). Each
quarter note in the figure translates to four 16th time-steps in the vector
encoding.

Notes are sustained by repeating pitches for multiple time-steps. Thus the difference
between a sustained long note and multiple shorter notes immediately following each
other is not well-defined. The encoded melody shown in Figure 4.1 could for example
also be interpreted as only consisting of 16th notes as shown in Figure 4.2.

        
Figure 4.2: A different decoding of the example melody.

Therefore some studies include an attack bit, i.e. an extra row in the representation,
to indicate the beginning of a new note [WA16]. Other studies double the resolution
of the time-step grid to be able to indicate the end of a note [ES02, Lac16].
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A model based on the note-duration encoding trains on sequences of notes, each
note consisting of a pitch and a duration. This is the most natural way to think of a
melody from a musicians perspective as music is notated in the staff notation in this
way, too. The Figure 4.3 sketches the encoded melody on the right.

  


...
. . . 0 . . .
0 0 0 1
0 0 1 0
0 0 0 0
0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0
1 1 1 1
. . . 0 . . .

...



Figure 4.3: Example melody in staff notation (left) and note-duration encoding (right).
Each quarter note translates to one column vector. Each column vector consists
of two ones and zeros otherwise. The top 1 indicates the pitch and the bottom
1 indicates the note duration. In this case all note durations are quarter notes.
The zeros on the top and the bottom indicate possibilities for higher pitches
and other note durations.

Each note is made up of one vector in which the note’s pitch is indicated in the top
part with one 1 and the note’s duration is indicated in the bottom part. Each note
has the length of a quarter note so the bottom part of the matrix makes up a row of
ones. A pause in this encoding can be indicated in the pitch part by an extra row, i.e.
one row in the pitch section of the note vector denotes a pause instead of a pitch. The
advantages of this encoding compared to the time-step encoding are that sequences
are compressed in length and sparse attack sequences do not need to be guaranteed
[TK18]. This encoding is used in [CSG17] and [Moz91].

In the note-beat-position encoding, the model learns to predict an ending beat
position with each note. Note duration is calculated as the difference between ending
beat positions. A possible disadvantage of the note-duration encoding compared to the
note-beat-position encoding is that some rhythms tend to dominate the training set
and the note-duration encoding is more susceptible to predicting the same duration
(e.g. quarter note) over and over again. The note-beat-position encoding, however,
does not recognize melodies that are shifted by a few time-steps as the same, while the
note-duration encoding does.
This thesis will focus on the note duration encoding and leave the other encodings

for future research. We will now describe the note duration encoding used in this work
in detail.
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4.1 Pitch-duration model

4.1 Pitch-duration model
A sequence is an enumerated collection of objects. In our case the objects are notes
which are defined as d-dimensional feature vectors. These vectors are split up into
different parts, the first part being the pitch of the note. We restrict the pitch to be
in the range C3 to B5. This range is large enough to capture most commonly used
melodies. One note can have exactly one pitch or be a pause so this part of the feature
vector is a one-hot vector with 36 + 1 = 37 dimensions.

C4 C♯4 D4 D♯4

0

B6

0100

37-dimensional

0

pause

C4 C# D D#

0

B6} 0100

36-dimensional

Figure 4.4: One-hot vector representation with pause indicating the pitch D4.

The next part of the feature vector is the duration of the note which is represented
by a 48-dimensional one-hot vector, similar to [CSG17] and [TK18]. Each dimension in
this vector represents a fraction of a whole note, e.g. the twelfth dimension represents a
quarter note (12/48), the sixth dimension an eighth note (6/48), the fourth dimension
an eighth triplet(4/48), etc. This design choice makes it possible to represent most
common note durations and some combinations thereof.

1/48th 1/24th 1/4th  
(quarter note) whole note

00

48-dimensional

C4 C# D D#

0

B6} 0100

36-dimensional

1 0

Figure 4.5: A one-hot vector representation of the duration indicating a quarter note.

With the pitch and duration vector we can represent melodies, if their pitches are
in the range C4 to C6 and their note durations are representable with the duration
vector.

Since we choose to emphasize this connection between melody and harmony in this
thesis, we add harmonic context vectors to the encoding. We encode chords with a
12-dimensional multi-hot vector and a 12-dimensional one-hot vector representing the
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root note of the chord. A multi-hot vector is a binary vector that, as opposed to a
one-hot vector, can contain multiple ones. This way, all major and minor triads are
uniquely mapped to and from the encoding. In Figure 4.6, the same C major chord as
in Figure 2.3 is illustrated. Alternatively, we could have designed harmonic context as
a 24-dimensional one-hot vector that represents all possible major and minor chords.
This would, however, make the chord representations independent of each other. With
our encoding we include the information about which notes are in which chords so that
connections between chords can be learnt by the algorithm. The aim is that similarities
between the chords, such as their structuring within the circle of fifths, are inferred by
the learning algorithm.

C

1

12-dimensional

C4 C# D D#

0

B6} 0100

36-dimensional

0 0 0 1 0 0 1 0 0 0 0
C♯ D D♯ E F F♯ G G♯ A A♯ B

Figure 4.6: The C chord in vector representation.

The final context vector is made up of the current chord, the current chord’s root note,
the chord corresponding to the next note in the melody and the root note of that
chord. By concatenating these vectors we obtain the 133-dimensional feature vector,
as depicted in Figure 4.7.

pitch: 37-dim one-hot vector

duration: 48-dim one-hot vector

current chord: 12-dim multi-hot vector

root note of current chord: 12-dim one-hot vector

next chord: 12-dim multi-hot vector
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Figure 4.7: Complete feature vector in the note-duration encoding for the pitch-duration
model.
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4.1 Pitch-duration model

A sequence of these feature vectors now represents a melody which can be fed the
model. The output of the model is chosen to be one note consisting of pitch and
duration. This way, the model is designed to take a sequence of notes as input and
output, one note representing the next note in the sequence.

n feature vectors output vector

pitch-duration
model

Figure 4.8: Pitch-duration model. One feature vector is made up of three parts. The blue
part represents the pitch, the green part represents the duration and the purple
part represents the harmonic context.

We will call the above model the pitch-duration model. The feature vectors now
make up a sequence representing the melody that is fed into the model, as depicted in
Figure 4.8.

The pitch-duration model’s architecture is chosen to be a 2-layer LSTM with hidden
dimension 128 in both hidden layers which results in 282.837 parameters. The output
ŷ is a vector with two sections. The first 37 dimensions make up the first section ŷpitch
and the latter 48 dimensions make up the second section ŷduration. The vector ŷpitch
represents a 37 dimensional probability distribution over the possible pitches including
the pause marker and the vector ŷduration represents a 48-dimensional probability
distribution over the possible durations. The loss function is chosen as a convex
combination of the cross-entropy losses of pitch and duration labels and the model’s
outputs, i.e. for λ ∈ [0, 1].

Loverall(ŷ, y) = λLpitch(ŷpitch, ypitch) + (1− λ)Lduration(ŷduration, yduration) (4.1)

To emphasize the importance of pitch we set λ = 0.8. This loss function is differ-
entiable as a linear combination of differentiable functions so it is straightforward to
apply backpropagation.

The most similar architecture to the pitch-duration model found in literature is that
of the DeepArtificialComposer [CSG17]. This differs in the splitting of the network
into a separate pitch network and duration network. In their architecture, the duration
network takes the previous pitches and durations as its inputs and predicts a pitch.
Then the pitch network takes this prediction as well as the previous pitches and
durations as input and predicts a pitch. In contrast to this, our pitch-duration model
predicts both pitch and duration at the same time using one network. This means
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4 Modelling melody generation

that our model is more compact which is advantageous for deploying it in a realtime
application.

4.2 Pitch-only model
For the final application of the melody generation model, we will also consider a pitch-
only model which omits the duration vector in the encoding and simply generates a
sequence of pitches. This model is useful for the interactive deployment in which we
preserve the natural rhythm of the human input by copying the input rhythm.

n feature vectors output vector

pitch-only
model

Figure 4.9: Visualization of the input and output for the pitch-only model. Feature and
output vectors contain pitch and harmony information while leaving out duration
information.

The architecture of the pitch-only model is a 2-layer LSTM with hidden dimension
128 in both hidden layers. The input is 85-dimensional and the output is 37-dimensional.
The loss function is defined by the cross-entropy loss of the pitch-label and the pitch-only
model output.

4.3 Adding tonality
To add information about the tonality of a piece to the harmonic context, we need to
further investigate the concept of tonality first. Tonality is not a well-defined concept.
Ideally, there would be a unique classification of a piece of music to one tonality.
However, as we will explore in the following example, there is some level of uncertainty
to a tonality of a piece. On top of that, most music datasets do not contain key
information or even worse wrong key information. So first we need to investigate to
what extent it makes sense to add tonality to the harmonic context.

We begin with an example of a chord progression of G major, C major, G major and
C major. The accompanying melody is made of the notes D, D, F, G, F, D, D, F, G,
F, as illustrated in Figure 4.10. The G major chord consists of the notes G, B, D and
the C major chord consists of the notes C, E, G. In most western music the melody is
meant to be coherent with the chords. While a melody by itself can sound consonant
in itself, it is the harmonic context, given by the chords, that makes it sound coherent
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4.3 Adding tonality
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Figure 4.10: Example melody with chords. The bottom line shows the chord progression in
which the G major and the C major chord alternate. The top line shows the
melody consisting of the notes D,F and G.

within a harmonic structure. We will for the sake of simplicity assume that the chord
always implies the corresponding scale, e.g. C major chord implies the C major scale.
There are more complex scales and chords but this thesis focuses on major and minor
tonality.

The harmonic structure is hierarchical. While each chord implies a tonality there is
also an overall tonality of this excerpt of music. According to our example, this means
that each bar has its respective tonality, i.e. the first bar is in G major, the second
bar in C major, the third bar in G major and the fourth bar in C major. The overall
tonality of this excerpt is marked as C major in the staff notation, but could in the
context of the larger piece of music also be something different, e.g. G major. The
melody and harmony together imply a hierarchy of what tonalities are more or less
likely. That again is difficult to define in a clean way. The Circle of Fifths gives an
indication for this hierarchy. Notes in the piece of music are part of certain scales,
corresponding to the keys in the circle of fifths while they are not part of others. Scales
that include all notes are more likely to be fitting candidates for the tonality of the key.
The Circle of Fifths indicates this conveniently as neighboring keys only differ by one
note in their scales. In most cases the tonality for this example would be categorized as
C major. Only the C major scale contains all notes (D,E,F,G,B) used in the example.
The G major scale only does not contain the F note but this F note is only played
during or leading up to the C major chords. This means the F note could have been
used here as a stylistic device to create some tension as it is not completely dissonant in
the context. Therefore, G major is also a viable candidate for the tonality of the whole
excerpt. This ambiguity makes it hard to come to clean conclusions about consonance.
However, as seen in the circle of fifths, the difference between the scales of the two
viable candidates C and G is only one note, i.e. F vs F], so they are harmonically very
similar by that measure. Following this similarity, an algorithm that misjudges the
example melody to be in G even if it is in C might still yield valuable information.
Therefore, it is reasonable to assume that an algorithmically detected key is beneficial
for the model. Moreover, we will evaluate in Chapter 7 whether the model benefits
from the added key information based on the metrics.
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4 Modelling melody generation

4.4 Key detection with pitch class profiles
One of the most seminal approaches for key detection was introduced by Krumhansl
in [Kru90]. Despite being long-established, it is at the time of writing still a widely
used method for detecting keys in symbolic music data. The technique stems from
the results of an experiment in which listeners rated how well pitch-classes fit in with
a key based on their perception [KK82]. For the algorithm, a set of 12 dimensional
vectors is defined, called key-profiles. These vectors represent the compatibility of each
pitch-class with the key. The major and minor key-profiles used here are from [Aar03]
and differ from the original ones in [KK82]:

major =



17.7661
0.145624
14.9265
0.160186
19.8049
11.3587
0.281248
22.062

0.145624
8.15494
0.232998
4.95122



, minor =



18.2648
0.737619
14.0499
16.8599
0.702494
14.4362
0.702494
18.6161
4.56621
1.93186
7.37619
1.75623



.

The key profiles are consistent with tonal music theory as the notes from the
corresponding scale have higher values than the rest and the values from the main
triad (major triad or minor triad) are highest, as illustrated in Figures 4.11 and 4.12.
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Figure 4.11: Aarden key profiles for major (left) and minor (right). The x-axis on the figure
goes from 0 to 11 representing all pitch-classes. For the key of C, we can think
of the root pitch-class C as 0 and C] as 1, etc. For the key of C], we can think
of the root pitch-class C] at 0, and so on.
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Figure 4.12: Key profiles plotted onto the Circle of fifths (C major left and C minor right).
By plotting the key-profile values on the circle of fifths one can visualize the
structure of the vectors. One side of the circle of fifths has small values while
the other has large values. This shows a connection between the neighboring
pitch-classes on the circle of fifths that is captured by the vector representation
in the key profiles.

The KS algorithm is based on the Sample Pearson correlation coefficient which is
defined for two vectors x = (x1, ..., x12) and y = (y1, ..., y12) with means x̄ = 1

n

∑12
i=1 xi

and ȳ = 1
n

∑12
i=1 yi as:

rxy :=
∑12
i=1(xi − x̄)(yi − ȳ)√∑12

i=1(xi − x̄)2
√∑12

i=1(yi − ȳ)2
. (4.2)

Rearranging with sx :=
√

1
n−1

∑n
i=1(xi − x̄)2 and sy :=

√
1

n−1
∑n
i=1(yi − ȳ)2 yields:

rxy = 1
n− 1

n∑
i=1

(xi − x̄
sx

)(yi − ȳ
sy

)
. (4.3)

This shows that rxy is the mean of the products of the standard scores (xi−x̄
sx

).

Finally, a piece of music is represented by another 12 dimensional vector, the sample
vector, by accumulating the total duration of each pitch class in the piece. The
Krumhansl-Schmuckler key-finding algorithm is obtained by calculating the Pearson
correlation coefficient for the sample vector x and all key-profile vectors y and choosing
the key with the highest coefficient. It reflects the strength with which the key is
represented in the sample vector. The key with the maximum correlation value is the
preferred key. The idea of the algorithm is to compute the most similar key to the
sample vector according to this coefficient. We will evaluate the KS algorithm after we
introduce the datasets.
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4 Modelling melody generation

4.5 Pitch-duration-key model
The harmonic context can be expanded by adding key information with the key-
detection algorithm. This yields a new model which we will call pitch-duration-key
model.

n feature vectors output vector

pitch-duration-key
model

Figure 4.13: Pitch-duration-key model. The input contains pitch, duration, chord and key
information and the output contains pitch and duration information.

The key information will be added to the feature vector just like the current chord
with a 12-dimensional one-hot vector indicating the root of the key and 12-dimensional
one-hot vector indicating the respective major or minor scale. The root key is added to
make a differentiation between a major scale and its relative minor scale as they consist
of the same pitch-classes. The input is of dimension 157 = 37+48+4∗12+2∗12 and the
output is of dimension 85 = 37 + 48. Hence, the architecture of the pitch-duration-key
model is the same as that of the pitch-duration model but with the added context of
the key.

4.6 Generating melodic sequences
To obtain a melody of length m ∈ N, we start by predicting one output vector from
a inputmelody of length n ∈ N. Here, n is not fixed as LSTM based model can take
an input sequence of any length. The predicted output vector is appended to the
inputmelody after a matching harmonic context is concatenated to it. The inputmelody
now consists of n+ 1 feature vectors and can be fed to the model to predict the next
output vector. This procedure is repeated until the inputmelody is of length n+m
and the last m vectors in this melody yield the predicted melody of length m ∈ N.
This way, our model takes a melody of any length and can output a melody of any
length as specified in the requirements.
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5 Data
In this chapter, we introduce the datasets that are used for training and evaluation
and discuss preprocessing.

5.1 Datasets
This thesis aims to predict a melody in twelve-tone equal temperament. To reduce
the complexity of this task it was decided to use a symbolic representation of music
as opposed to Audio data. Two commonly used file formats of symbolic music are
the MIDI file format and the MusicXML file format, both of which are used in this
work. The amount of songs used in other related research for training similar models
differs greatly from paper to paper and ranges from only few minutes [Moz91], [ES02]
in earlier experiments to 200 hours [HSR+19] in the Tensorflow Magenta dataset.

5.1.1 Wikifonia Dataset
The Wikifonia dataset was developed in a collaboration between several institutes
of higher education in Ghent (Belgium). It consists of over 100 music pieces in the
leadsheet file format MusicXML which is an XML based file format representing
Western musical notation. The music is mostly contemporary/popular music by artists
such as Elton John, Adele or Brian Wilson. 99.8% of the notes in the dataset are in
the range C3 to B5 which is the range for the note-duration encoding.
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Figure 5.1: Excerpt from Elton John song from the Wikifonia dataset.

Models trained with this dataset will be marked as Wikifonia models. The used
corpus from this dataset makes up 4005 bars of music which is comparable to similar
research such as [TK18] which used 1700 bars of music.
This distribution of pitches in Figure 5.2 shows that the chosen range for pitch is

appropriate for the data. Most pitches are concentrated in the center of the range and
there are less on the outer margins of the range. Moreover, the distribution reveals
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Figure 5.2: Histogram for pitches in the Wikifonia dataset. This plot shows how often each
pitch occurs in the Wikifonia dataset.

that the notes from the C major scale occur visibly more often than the notes that are
not contained in the C major key.
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Figure 5.3: Histogram for durations in the Wikifonia dataset. This plot shows how often
each duration occurs in the Wikifonia dataset.

The distribution of durations in the Wikifonia dataset, as plotted in Figure 5.3,
shows that the dataset is dominated by eighth and quarter note durations.

5.1.2 Beatles Dataset
The Beatles dataset was created in [Lac16] by transcribing excerpts from 16 Beatles
songs from the music book “Pop Classics For Piano: The Very Best Of The Beatles -
Easy Arrangements for Piano” by Hans-Günter Heumann to MIDI files.
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Figure 5.4: Example melody excerpt with chords from the Beatles dataset.

It consists of 68 MIDI files that are each 8 bars long which makes 544 bars of music.
Melody pitches range from C4 to B5 while chord pitches range from C3 to B3. Models
trained on this dataset will be marked as Beatles models.
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Figure 5.5: Histogram for pitches in the Beatles dataset. This plot shows how often each
pitch occurs in the Beatles dataset.

The distribution of pitches in the Beatles dataset, as can be seen in Figure 5.5, is
similar to that of the Wikifonia dataset. The distribution of durations in the Beatles
dataset is also dominated by the eighth and quarter notes, just like in the Wikifonia
dataset.
However, the the Beatles dataset consists of more occurring duration classes than

the Wikifonia dataset. This can indicate that the Beatles dataset consists of more
intricate rhythms than the Wikifonia dataset. An alternative explanation for this is
that due to the encoding in MIDI the durations used in the Beatles dataset are less
cleanly converted to the pitch-duration encoding than the XML dataset.

This points to a potential issue with datasets in the MIDI file format, as it is easily
possible to create MIDI files with “non-clean ” rhythms. MIDI files are made of events
that are timestamped by ticks. A common choice for discretization is that one tick
equals 1/480th of a quarter note. This makes it easy to create MIDI files with slight
delays in the rhythm. For example, it is possible to play a note a few ticks behind the
beat. The complexity of rhythms is increased immensely by these subtleties. On the
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Figure 5.6: Histogram for durations in the Beatles dataset. This plot shows how often each
duration occurs in the Beatles dataset.

one hand, MIDI files with such complex rhythms can be of very high quality, if they are,
for example, created by recording professional musicians playing with a MIDI controller.
On the other hand, MIDI files can easily contain “non-clean” rhythms that root in the
creator of the MIDI file being sloppy in the creation process. In any case, such complex
rhythms are difficult to encode in the rhythms into the note-duration encoding. The
tick resolution is way higher than the duration resolution in our encoding which means
the durations have to be rounded to the closest possible one. Contrarily, XML files
make such examples more difficult to create as their creation is inspired by the staff
notation where one defines pitches and durations similar to the pitch-duration encoding.
Therefore, MusicXML datasets seem to contain “cleaner” rhythms than MIDI datasets.

5.1.3 Lakh MIDI Dataset

The Lakh MIDI dataset [Raf16, Raf] is a collection of 176,581 unique MIDI files. 45,129
of these MIDI files have been matched and aligned to entries in the Million Song
Dataset. The Million Song Dataset is a freely-available collection of audio features and
metadata for a million contemporary popular music tracks [BMEWL11]. The Lakh
MIDI dataset aims to facilitate large-scale music information retrieval, both symbolic
(using the MIDI files alone) and audio content-based (using information extracted from
the MIDI files as annotations for the matched audio files). Though the quantity of this
dataset is great, it could not easily be used to train our model. Each file is made up of
multiple tracks that are inconsistently labelled, which makes it impractical to cleanly
import a monophonic melody with a harmony. This dataset is used to benchmark the
key detection algorithm.
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5.2 Data preprocessing

5.1.4 Bach Dataset
The Bach dataset contains 96 fugues and preludes of Bach from the “Well-Tempered
Clavier”. This is a convenient dataset for testing key detection algorithms as each of
the 24 major and minor keys are contained in it.

5.2 Data preprocessing
Before being able to train a model with data, the datasets need to be converted to
the note-duration encoding described in Chapter 4. The Python package music21
[Cc, CA10] was used to transform both MusicXML files and MIDI files into the encoding.
To fit the encoding, only songs with maximum note durations of a whole note are
considered. After preprocessing, the Beatles dataset consists of 16,055 data samples
and the Wikifonia dataset consists of 205,524 data samples.

The datasets are converted to feature vectors by matching note pitch, note duration,
current chord and next chord for each occurring note. A sequence length of 8 is chosen
as the length for the input sequences. Each sequence of 8 consecutive feature vectors
makes up an inputmelody and the label is set as the following note’s pitch and duration.
Hence, one training data sample consists of a sequence of 8 feature vectors, a one-hot
label for the next note’s pitch and a one-hot label for the next note’s duration.

5.2.1 Data augmentation
The data is augmented by modulating the notes in the datasets into all twelve keys.
Doing this removes the bias towards keys used more often in the dataset and expands
the information in the data to all keys. We modulate the pitches downwards. If a pitch
falls below C3 we transpose it up an octave. This changes the trajectory of the melody,
but leaving it out would change the melody more drastically. Only 2% of the pitches
in the Wikifonia dataset are below C4, so not many notes needed to be transposed
up an octave. Nevertheless, depending on the use case, it can be advantageous to
expand the possible pitch range to represent more than 36 pitches to prevent this
issue. However, we deliberately choose to limit the range of the possible pitches to
36, because this amount of possibilities is plenty for the application of the interactive
melody generation.
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Figure 5.7: Transposing an excerpt down by one half-step (from left to right).
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5 Data

The changed distribution of pitches in the training sets can be seen in the Figures
5.8 and 5.9 below. The distribution of duration remains unchanged as each duration
simply appears 12 times as often.

C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4 C5 D5 E5 F5 G5 A5 pause
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Figure 5.8: Histogram showing the distribution of pitches in the augmented Wikifonia
dataset after transposing each piece of music into all twelve keys of the same
mode. From the plot it may look like the number of pauses has increased but
the ratio of pitch notes to pauses remains the same.
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Figure 5.9: Histogram showing the distribution of pitches in the augmented Beatles dataset
after transposing each piece of music into all twelve keys of the same mode.
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6 Training and Evaluation Methods
This chapter discusses training and evaluation of the models introduced in Chapter 4.
Training methods, model design details and hyperparameters for each model are given.
Additionally, the methods for evaluation of the models are explained.

6.1 Training methods
Training means minimizing the loss function with stochastic gradient descent. More
specifically, the training set is shuffled so that mini-batches can be drawn. Mini-batches
of size batch-size are drawn at random without replacement. Each mini-batch is
forward and backward propagated and the parameters are updated, as specified in
3.3.1. An epoch is defined as a single pass through the entire training set. The following
techniques help generalization of the model (higher accuracy on unseen data) during
training [GBC16].

6.1.1 Early Stopping
For early stopping, a validation set is drawn from the training set. The accuracy is
evaluated on the validation set after each epoch and stopping criteria is applied to
this evaluation. During training, the accuracy usually first increases on all sets and
then plateaus out or decreases on the validation and test set, as the parameters are
optimized only with respect to the training set. Training is stopped, when the accuracy
on the validation set is maximal. This is the point where the neural network starts to
overfit on the training data because performance does not improve on the validation
set, as sketched in Figure 6.1. Stopping is achieved in practice with help of a patience
value. The patience value is an integer that defines how many epochs we continue to
train once the validation accuracy starts to increase. [LTN18]

6.1.2 Dropout
Another commonly used technique that aids generalization is Dropout [SHK+14]. With
this technique, at each training step nodes in the network are “dropped out” of the
network with a probability pdrop so that a reduced network is left. The reduced network
is trained for one training step and the removed nodes are reinserted into the network
with their last-known weights. Rates between pdrop = 0.3 and pdrop = 0.5 are common.
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6 Training and Evaluation Methods

accuracy

epochs

validation accuracy

training accuracy

early stopping

Figure 6.1: Visualization of early stopping and overfitting. The training accuracy and the
validation accuracy are plotted. We want to stop training when the validation
accuracy starts decreasing.

After training on different reduced networks the full network is combined by weighting
all weights by the factor pdrop so that the expected value of each node is the same as
in the training stages. With this we obtain an approximation of the sample average
of all possible 2n networks, which means we also only have to test the one combined
network. Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are different from each other and in order to make
neural net models different, they should either have different architectures or be trained
on different data. Training many different architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train different networks on
different subsets of the data. Even if one was able to train many different large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many different neural network
architectures efficiently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Figure 6.2: Dropout visualization on a neural network. A comparison between the connec-
tions of a fully connected neural network (left) and the connections remaining
after the application of dropout in a training step (right). Image taken from
[SHK+14].
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6.2 Training setup

6.1.3 Gradient Clipping
The gated mechanism of the LSTM only addresses the vanishing gradient problem and
not the exploding gradient problem. If a parameter gradient is large, the parameter
update could “throw” the parameters too far into a region where the objective function
is larger, undoing much of the work that has been done to reach the current solution
[GBC16]. A straightforward countermeasure to this problem is gradient clipping. Here,
we set a threshold, e.g. v = 1 and if the gradient norm ‖g‖ > v, we update the gradient
by gnew = v

‖g‖g.

6.1.4 Initialization of weights and biases
Neural networks are non-convex because of their nonlinear activation functions. Thus,
gradient descent converges to a local minimum, if it converges. Therefore, the mini-
mization achieved by gradient descent based algorithms is highly dependent on the
initialization of the network’s weights and biases. All models in this thesis were initial-
ized with the Xavier Glorot initialization [GB10] which initializes the parameters with
a uniform distribution in the range [−

√
6√

ni+ni+1
,

√
6√

ni+ni+1
], where ni is the number of

units in the i-th layer.

6.2 Training setup
The models were trained using Tensorflow with Python on the Google Colab platform1.
The hardware specifications are a Tesla K80 GPU with 12 GB of RAM and a single
core Xeon Processor 2.3Ghz. Input and output of the models are described in section
4. From each dataset 10% of the data was left out as test data and the remaining 90%
was split up in 80% train data and 20% validation data.

Different configurations of hyperparameters were tested on the pitch-duration model
with the Beatles dataset and the configuration with the highest test accuracy was
chosen to be used for all models. The Adam optimizer[GBC16, Ch . 8.5.3] was used
as the parameter update rule with a learning rate of 0.001 and mini-batches of size
32. We used two hidden LSTM layers with layer size of 128. Dropout was applied
with pdrop = 0.3. We used early stopping with a patience value of 3. The number of
epochs varied between 10 and 50. Gradient clipping by norm with a threshold of 5 was
applied.

1https://colab.research.google.com
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6 Training and Evaluation Methods

6.3 Evaluation methods
The models were trained by optimizing their capability to predict the correct next note
in a sequence of notes. On the one hand, the goal of the evaluation is to show whether
the model is able to generalize in the sense of being able to predict the correct next
note on the test dataset which represents unseen data. On the other hand, the aim
is to teach the model how to create consonant melodies in general. As stated earlier,
consonance is a subjective concept, but we will nevertheless define metrics to measure
this concept. The metrics are based on the following assumptions about characteristics
of consonant melodies:

Harmonic consistency. Melodies should consist of notes that fit the harmonic
context that is created by the chords.

Creativity.
Variation. Melodies should consist of various pitches and durations. Fur-

thermore, the generative model should not just copy melodies from the
dataset.

Few pitch repetitions. Melodies should not repeat the same pitch over and
over again.

Stability.
Not too much variation. Melodies should not consist of too much variation.
Conjunct melodic motion. There should be few large interval jumps from

one note to the next. This is a feature of tonal music described in [Tym10,
Ch. 1].

To begin with, we explain how melodies are generated for evaluation purposes. Then
we define metrics that measure musical qualities of the melodies. The evaluation of the
generated melodies will be discussed in Chapter 7. The goal of this evaluation is to get
insight into how well the models learned to generate melodies similar to those in the
dataset. By quantifying specific musical notions, we obtain a more meaningful insight
into the quality of the model than the accuracy metric, that it is trained on, provides.

In this work, similar to [TK18] and [DHYY18], we generate 1.000 melodies (feature
vector sequences) of length 9 with each model. The choice of the length 9 is motivated
by the related work [TK18] enforcing their predicted sequences to be between half a
measure and four measures. With our model mostly predicting eighth and quarter
notes, a melody of length 9 is most likely in that range, too. The choice of fixed
length sequences speeds up computations of the evaluation as they can be computed
with matrix operations. Still, computation time remains a limitation to scalability of
the evaluation approach. Each sequence is generated by priming the model with a
randomly chosen melody of 8 feature vectors out of the test data that is left out at
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training. A melody is then predicted successively until it consists of 9 feature vectors.
We prime the model with test data to simulate the real case in which the model is
primed with a melody that is most likely not in the training set.

6.3.1 Harmonic Consistency (HC)
The Harmonic Consistency (HC) metric from [TK18] measures how well predicted
notes adhere to the given chord progression. It categorizes notes in relation to the
chords into black, green, blue, and red notes. The note categorization is not clearly
defined in [TK18] as blue notes are set as “approach notes” (by one half-step) to a chord
note or to a note sympathetic to the chord and all notes can be considered approach
notes to some note sympathetic to the chord. In this work, harmonic consistency is
measured as follows.

Black notes are notes from the current chord. Green notes are notes from the scale
belonging to the current chord. For major chords, the corresponding scale is the major
scale and for minor chords the corresponding scale is the minor scale. The remaining
notes are classified as blue, if they are part of the next chord or the next chord’s scale
and not longer than an eighth note. The leftover notes are red notes as can be seen by
examples in Figure 6.3.

          C G F C

Figure 6.3: Example melody to visualize the note color scheme. Black notes are chord notes,
green notes are chords from the scale belonging to the chord, blue notes are
approach notes and red notes are notes that are classified as dissonant.

6.3.2 Creativity metrics
The following metrics are designed to measure whether the generated melodies are
“interesting” in the sense that they vary in pitch and rhythm. Melodies can further be
considered interesting if they vary from the melodies within the training corpus. These
metrics were adapted from [TK18].

The Pitch Variations (PV) metric represents the ratio across all sequences of the
number of distinct pitches to the total number of notes in the predicted sequence.

ratio(sequence) = number of distinct pitches in sequence
total number of notes in sequence

The average ratio over all predicted sequences is computed to be the PV value. The
averages in the metrics are computed by the arithmetic mean.
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Similarly, the Rhythm Variations (RV) metric measures the average ratio across
all sequences of the number of distinct note durations to the total number of notes in
the sequence.

ratio(sequence) = number of distinct durations in the sequence
total number of notes in the sequence

The average ratio over all predicted sequences is computed to be the RV value. The
PV and RV metrics indicate if the variation in pitch and duration is too high or too
low.
The Rote Memorization (RM3,RM4,RM5,RM6) metric measures how often

a subsequence of respectively three, four, five or six pitches are copied exactly from
the corpus. For fixed s ∈ [T ], a sequence (x1, ..., xT ) consists of T − s+ 1 subsequences
of length s of the form (xt, ..., xt+s−1) for t ∈ [T − s+ 1].

RMx score = number of subsequences of length x contained in the corpus
total number of subsequences of length x

We measure this metric for subsequences of lengths 3,4,5 and 6. This metric gives more
insight into the generalization capability of the model

6.3.3 Mode collapse metrics
Mode collapse metrics measure whether the generative model is collapsing to a pa-
rameter setting that always emits the same output. The term mode collapse stems
from the field of generative adversarial network research, a type of neural network, and
describes the phenomenon of the network generating a limited diversity of samples
[TK18]. In music generation, this could mean predicting the same pitch or duration
over and over again which would imply less interesting melodies. These metrics were
also adapted from [TK18].
The Consecutive Pitch Repetitions (CPR) metric measures the frequency of

occurrences of two consecutive pitch repetitions, i.e. the number of times that one
pitch is repeated three times consecutively. The CPR metric shows if the predicted
melodies fulfill the requirement of few pitch repetitions.
The Durations of Pitch Repetitions (DPR) metric measures the frequency of

a CPR that lasts at least a half note, i.e. the number of times that one pitch is
repeated three times consecutively and their durations sum up to at least a half note.
A high DPR score points to noticeable pitch repetitions that likely make a melody less
interesting.

The Tone Spans (TS) metric measures the frequency of tone spans greater than an
octave, i.e. the number of times a two consecutive notes are further than 12 half-steps
apart from each other. A high TS score would indicate dissonance as the melody does
not meet the requirement of conjunct melodic motion.
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7 Evaluation
This chapter presents the evaluation results for the key detection algorithm and the
evaluation of the models with the metrics described in section 6.3.

7.1 Evaluation of the Key Detection Algorithm
To measure performance of the Krumhansl-Schmuckler (KS) key detection algorithm
from section 4.4 , it was analyzed how many pieces of music could be classified correctly
on different datasets. The KS algorithm with original weights scored 81% overall correct
on the 48 preludes of Bach’s “Well-Tempered Clavier” when only given the first four
notes of each piece as input [Kru90, Ch. 4]. We tested the KS algorithm with different
key-profiles and on different datasets. On all tested datasets, the KS algorithm with
Aarden key-profiles gave the best results. Specifically, on the 96 fugues and preludes of
Bach, the KS-algorithm scored 83% correct with 14% classified in the relative minor
key. The performance was further tested on the Lakh Midi Dataset [Raf16] which is
a larger dataset than the Bach dataset. As noted in [RE16], some MIDI programs
automatically annotate the key signature in the MIDI file to C major even though the
piece is in a different key. Pieces with no key annotation or with annotated C major
key signature were therefore omitted from this performance measure. On a subset of
169 pieces from this dataset the KS-algorithm scored 62% correct with 18% classified
in the relative minor key. Though the KS-algorithm is not 100% accurate in detecting
keys, these measurements indicate a reasonable performance. No better key detection
algorithm was found, so we leave it up for future research to improve the algorithm. As
explored in section 4.3, a wrongly detected key might still contain valuable information
for the algorithm. Therefore, we choose to use this key detection algorithm for the
pitch-duration-key model.

7.2 Evaluation of the models
We evaluated each model on the Beatles and the Wikifonia datasets, see Chapter 5, to
get an indication of how well the models work on different types of original data formats.
First, we give the accuracy scores of the models after training as basic indications for
generalization capacity of each model.
The model overfits on the training set because the model is trained on it. The

hyper-parameter tuning can also cause overfitting on the validation set. Thus, the test
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Dataset Model pitch accuracy duration accuracy
train val test train val test

Beatles pitch-only 0.46 0.34 0.32 - - -
Beatles pitch-duration 0.62 0.31 0.28 0.57 0.43 0.53
Beatles pitch-duration-key 0.53 0.33 0.28 0.55 0.43 0.53

Wikifonia pitch-only 0.44 0.31 0.35 - - -
Wikifonia pitch-duration 0.48 0.32 0.35 0.61 0.55 0.59
Wikifonia pitch-duration-key 0.52 0.32 0.36 0.61 0.55 0.59

Table 7.1: Train, validation and test accuracies for each model trained on each dataset.

accuracies are the most important ones because it represents the real case of unseen
data. Test pitch accuracies for the models trained on the Wikifonia dataset are 3-8%
higher than for the models trained on the Beatles dataset, as can be seen in Table
7.1. Test duration accuracies are 6% higher in Wikifonia models. By this measure, the
Wikifonia models show better generalization capacity. This result makes sense as the
Wikifonia dataset is ten times as large as the Beatles dataset and therefore most likely
contains more musical information.

In general, pitch test accuracies of 28% to 36% indicate that the models are capable
of learning patterns in melodies. It means, that given 37 options of pitches to choose
from at each prediction step, the correct one is chosen 28-36% of the time. On the
contrary, a duration accuracy of 53% to 59% does not indicate much, as the majority
of the datasets are made up of a few duration possibilities. Plotting the quantities of
predicted pitches and durations for the 1.000 generated sequences visualizes this for
the case of the pitch-duration model, see Figure 7.1 and Figure 7.2 for the Wikifonia
model as well as Figure 7.3 and Figure 7.4 for the model trained on the Beatles dataset.
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Figure 7.1: Quantitative analysis on the Wikifonia pitch-duration model. The plot shows
how often each pitch is predicted in the 1.000 generated melodies. The distribu-
tion is similar to that of the dataset.
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Figure 7.2: Quantitative analysis on the Wikifonia pitch-duration model. The plot shows
how often each duration is predicted in the 1.000 generated melodies. The
predicted durations are less diverse than in the dataset. The eighth and quarter
notes make up the majority of durations just as in the dataset.

The prediction pitch count plot for the Wikifonia dataset shows a similar distribution
of pitches as in the training dataset. The distribution is also symmetrical and bell-
shaped with center around E[4. It has an outlier at the pause marker. At the tails
the prediction counts get less similar to the plot for the training data. This shape
is similar to a Gaussian distribution with an outlier at the pause. It shows that our
model learns structure in the dataset.

The predicted melodies consist of only 5 different types of durations in the Wikifonia
model, see Figure 7.2, and of only 2 different types in the Beatles model, see Figure 7.4.
In contrast to this, the dataset contains a higher variety in durations, as can be seen
in 5.3. The quarter note and the eighth note are being predicted the majority of the
time, just like in the datasets. The duration distribution of the dataset is therefore not
perfectly approximated but shows similar features. The lack of different rhythms might
indicate that the generated melodies are not very interesting in their rhythms. This
can be a result of unbalanced classes. Some durations dominate the dataset naturally
as they occur more frequently in the dataset. A common approach to counteract this
is to scale the error depending on the class, which would make all classes equally as
important. The balancing of classes can overcompensate easily though. The model
should not learn to predict all durations with equal likelihood, some durations should
remain more frequent than others. Further research is needed to improve on the model’s
capability to learn more complex rhythms while staying close to the dataset’s duration
distribution.
To get a deeper insight into the musical qualities of the model, we now investigate

the model’s predictions with metrics that are based on musical concepts. If possible,
the dataset corpus for each source dataset is evaluated with the metrics. Then we can
compare the scores of the models to those of the respective datasets to be able to get an
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Figure 7.3: Quantitative analysis on the Beatles pitch-duration model. The plot shows how
often each pitch is predicted in the 1.000 generated melodies. The distribution
is resembles the distribution of the Beatles dataset pitches, yet it contains a
few out-liers at C4, D4 and F]4.
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Figure 7.4: Quantitative analysis on the Beatles pitch-duration model. The plot shows
how often each duration is predicted in the 1.000 generated melodies. The
predictions only contain eighth and quarter notes while the dataset contains
more variety of durations.

indication of how well the model is able to pick up musical concepts. The comparison
between the scores of the same model on different datasets has its limitations, as
these datasets vary in size. Hence, we will concentrate on the comparison of each
dataset-model combination to the respective corpus. The following sections evaluate
the generated melodies for each model with the introduced metrics from section 6.3.
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7.2.1 Harmonic Consistency (HC)
This metric measures the fraction of black, green, blue and red notes, as described in
subsection 6.3.1. Pauses are a separate category. As the pitch-only model does not
contain information about the durations, the blue notes cannot be measured for this
model which results in more red notes.

Dataset Model Black Green Blue Red Pauses
Beatles corpus 0.619 0.252 0.01 0.055 0.064
Beatles pitch-only 0.724 0.246 - 0.03 0.018
Beatles pitch-duration 0.611 0.317 0.02 0.023 0.03
Beatles pitch-duration-key 0.647 0.3 0.014 0.029 0.011

Wikifonia corpus 0.638 0.172 0.008 0.093 0.089
Wikifonia pitch-only 0.71 0.245 - 0.045 0.112
Wikifonia pitch-duration 0.667 0.248 0.02 0.011 0.055
Wikifonia pitch-duration-key 0.657 0.256 0.022 0.009 0.056

Table 7.2: Harmonic Consistency metric scores for each model.

Table 7.2 shows the evaluation on the predictions of each model-dataset combination.
The values in the table denote the share of each category for the predictions. All models
predicted an amount of pauses within 6% of the amount in their respective training
corpus. Thus, the models emulated the pause frequency from the music pieces in the
corpus. The lower the share of red notes, the more consonant the melody sounds in
the harmonic context of the chords. Black notes sound very consonant while green and
blue notes sound mostly consonant and can make the melody interesting. All models,
except the Beatles pitch-duration model, predicted a higher share in black notes than
there are in the corpus. The Beatles pitch-only model even predicted 10.5% more black
notes than the Beatles corpus consists of. This indicates that the model learnt a strong
connection between the predicted notes and the current chord notes. It likely stems
from the fact that black notes dominate the datasets and the path of least resistance
was to learn to play chord notes. Playing mostly the notes from the chord makes the
melodies harmonically consistent but may lead to little variety. The pitch-duration and
pitch-duration-key models trained on the Wikifonia dataset scored lower amounts of
red notes than the rest, even though the Wikifonia corpus consists of twice the amount
of red notes as the Beatles corpus. All models predict an amount of green notes within
10% of the corpus frequency. Low red note frequencies combined with high black and
green note frequencies suggest the model predicts consonant melodies.

7.2.2 Creativity metrics
The Pitch Variation (PV) and Rhythm Variation (RV) values denote the average
variation ratio of generated sequences. The higher the ratio the more unique notes
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are in the sequence on average. The Rote Memorization’s RMx values denote how
many of the subsequences of length x are also contained in the training data corpus.
The RM values are lower for the models including durations because in this case two
subsequences with the same pitches and different durations are regarded as different
subsequences.

Dataset Model PV RV RM3 RM4 RM5 RM6
Beatles corpus 0.574 0.404 - - - -
Beatles pitch-only 0.247 0.111 0.914 0.762 0.638 0.532
Beatles pitch-duration 0.35 0.124 0.832 0.521 0.38 0.288
Beatles pitch-duration-key 0.292 0.115 0.871 0.605 0.48 0.388

Wikifonia corpus 0.581 0.367 - - - -
Wikifonia pitch-only 0.212 0.111 0.995 0.964 0.881 0.75
Wikifonia pitch-duration 0.243 0.134 0.967 0.851 0.689 0.513
Wikifonia pitch-duration-key 0.249 0.135 0.967 0.836 0.652 0.459

Table 7.3: Scores for each model on the creativity metrics: Pitch Variation (PV), Rhythm
Variation (RV) and Rote Memorization (RMx).

RV values are significantly lower for all models than in the corpus which means the
models produce sequences with less unique note durations, than there are in the training
corpus. Less variation is an indication for less creative melodies. This can also be a
consequence from the imbalance of classes in duration stated earlier. The PV values of
all models are also significantly lower for the pitch-duration models, around 20-30%
lower than in the corpus. This shows that the predicted melodies are not as diverse
as the training corpus. In all models the RM3 value is highest and the trend for all
models is that, the longer the subsequence, the less likely it is contained in the corpus.
The Beatles models have lower RM values than the Wikifonia models which may be
due to the fact that the Wikifonia dataset consists of more data. In general, the RM
values seem very high, with all of the Wikifonia models having a RM6 value of over
45%, which means that many created melodies are copied from the dataset. Thus, the
models seem to lack creativity.

7.2.3 Mode collapse metrics
The CPR and DPR values in table 7.3 shows the average amount of pitch repetitions
within a predicted sequence as defined above. The higher the value, the more pitch
repetitions occur in the sequences. High TS values mean many jumps from one note
to the next within the melody of over an octave which tends to not sound consonant.
Both datasets consist of under 10% CPR while all models score above 30% CPR.
The Wikifonia models score over 64% CPR and over 28% DPR. This indicates that
pitches are repeated a lot more often in the prediction than they are repeated within
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Dataset Model CPR DPR TS
Beatles corpus 0.08 0.044 0.107
Beatles pitch-only 0.548 - 0.03
Beatles pitch-duration 0.346 0.107 0.055
Beatles pitch-duration-key 0.454 0.136 0.016

Wikifonia corpus 0.094 0.05 0.116
Wikifonia pitch-only 0.754 - 0.011
Wikifonia pitch-duration 0.657 0.288 0.04
Wikifonia pitch-duration-key 0.644 0.306 0.03

Table 7.4: Scores for the mode collapse metrics: Consecutive Pitch Repetitions (CPR),
Durations of Pitch Repetitions (DPR) and Tone Spans (TS).

the dataset. Melodies with many pitch repetitions tend to be less interesting than
melodies with more movement. All models score low TS values of under 6%. Hence,
the predicted melodies consist mostly of small intervals. Small intervals in melodies
is named conjunct melodic motion in [Tym10, Ch. 1] and is characterized as an
important feature of tonal music. Thus, a small TS value can be seen as a requirement
of a consonant melody. However, as some small intervals are still very dissonant, for
example the tritone, a small TS value alone does not imply consonance.

7.2.4 Evaluation results
There are a few findings from the evaluation. First and foremost, the low HC Red
notes and high amount of HC Black and Green notes indicates that the models are
able to generate mostly consonant melodies within the harmonic context of the chord
progression. Moreover, the pitch test accuracy scores show reasonable generalization
capacity of the models. The Rote Memorization scores suggest that the models are
creating melodies distinct from the dataset to some extent, albeit insufficiently. The
Pitch Variation, Consecutive Pitch Repetition and Duration Pitch Repetition scores
signify that the generated melodies are not varying as much as the melodies in the
dataset. Furthermore, the Rhythm Variation score and the quantitative analysis of
the predicted durations imply that the model’s capability of generating rhythms are
restricted. In Conclusion, the models are capable of learning to generate consonant
melodies within a harmonic context but the melodies lack creative qualities.

The pitch-duration-key model is an extension of the pitch-duration model with the
added information of key in the harmonic context. The key was inferred with the
Krumhansl-Schmuckler key detection algorithm. In the HC metrics, the pitch-duration-
key models scored very similar to the pitch-duration models only differing up to 0.6%
in HC red. In creativity metrics, the pitch-duration-key models have similar to lower
variation scores. In the category DPR, the pitch-duration-key models score worse than
the pitch-duration models and in CPR they only score slightly better for the Wikifonia
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case by 1.3%. In TS, they score slightly better. In conclusion, there is no strong
indication that the added harmonic context of the key improves the pitch-duration
model by our metrics. It remains to be investigated whether the model’s performance
can be improved by a better key-detection algorithm or a dataset containing correct
keys. Another possibility is that the model learns the connection between key and
melody alone from the melody and does not benefit from extra information. As
simpler models are preferred at the same performance, we recommend choosing the
pitch-duration model.

These evaluations only scratch the surface. More refined metrics based on these and
more advanced concepts of music theory are required to analyze the strengths and
weaknesses of melody generation models more precisely.
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8 Interactive Melody Generation
The final challenge of this thesis is to deploy the model in a realtime environment. This
chapter elaborates on our approach to create an interactive application that generates
melodies based on user input. The idea for the application is partially inspired by
the “Magenta AI duet” [WA16], which also generates melodies interactive, though
without a harmonic context. The application is realized in JavaScript so that it can
run on a webpage and is easily accessible and usable via an internet browser. The
front-end, as well as most of the back-end of the program, is designed in the CindyJS
framework [vGKRGS16], which runs on top of JavaScript. The Machine Learning
model is deployed with Tensorflow.js. 1

The idea for the melody response application stems from the jazz music concept
Trading Fours. This term indicates a pattern in which two solo instruments alternately
play four bars each. This concept is not fixed on four bars, it can also be e.g. one, two
or eight bars. The use of melody generating LSTMs for trading fours with the user is
also developed in [Fra06]. Our realization of this concept focuses on the connection
between melody and harmony. The harmony is created by setting a chord progression
that is played in the background in an infinite loop, for a fixed amount of bars. One
loop means one iteration through the chord progression. Before being able to play a
sound within a loop, an implementation of timing is required.

8.1 Timing
As a basis for any music application, a discretization of time has to be implemented.
For this, the cstick script is used. The cstick script is a section in the CindyJS script
that is evaluated around about every 20 milliseconds depending on the hardware. A
variable timestamp is updated every time the cstick script is evaluated by the following
update rule.

timestamp = floor
(

12 ∗ seconds() ∗ bpm
60

)
Time is evaluated with the CindyJS function seconds() which is based on the
JavaScript function Date.now() and returns the current time to millisecond accu-
racy. The variable bpm stands for beats per minute, e.g. 120. The function floor

1An implementation of the interactive web application can be found at https://pdywilson.
github.io/jambuddy.html.
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8 Interactive Melody Generation

rounds the input down to the next whole number. This results in 12 timestamps
per beat and with four beats per bar it results in 48 timestamps per bar, as in the
note-duration encoding. Based on the timestamp variable all timed events can be
triggered, such as playing a note, starting a new loop and capturing the input of the
user for the inputmelody. Events need only to be stored with their own timestamp
that marks at what time the event should be triggered. If the global timestamp passes
that value, the event is triggered. These events will be explained after a brief overview
of the application’s front-end.

8.2 Front-end
The program starts by clicking the play button. This initiates the background music
loop that is only stopped, if the user clicks the pause button or leaves the application.
As seen in Figure 8.1, the user interface displays the current bar and beat similar
to other music software. Depending on the setting, the beat counts from 1 through
3 or 1 through 4 per bar representing 3/4 or 4/4 time signature. The bar counts 1
through 1, 2 or 4 depending on the user’s setting. In each bar one chord is played in
the background with a piano sound. Chords are chosen by the user out of all 24 major
and minor chords. With the settings chosen in the top bar depicted in Figure 8.1, the
program plays four bars with one chord per bar in the background.

Figure 8.1: View of the user interface of the Jam Buddy. The Chords can be adjusted by
rotation the green dots and clicking the chord name toggles between major and
minor chords.
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In the bottom of the interface, a piano is plotted that can be either clicked with the
mouse or played with corresponding keys on the computer keyboard. This way, the
user can play notes that make up a melody together with a harmonic context created
by the chords played in the background. These chords can also be adjusted with the
four circles that are plotted in the middle of the user interface. The User Input is
played back by triggering the playsin function in CindyJS which creates a sound
based on a sine wave. For the background chords and the AI generated melody, the
soundfonts [Gle] and [sal] were used. The top bar of the user interface enables the
user to choose between different background instrument tones and response melody
tones. The number of bars that are traded and the rhythm in which the background
chords are played is also set in the top bar. Whenever the user inputs a melody, the
program responds with a melody in the next iteration of the background music loop.
The calculation of this response melody will be described in the next section.

8.3 Back-end
We will discuss two variations of using the melody generation models in a realtime
application. The basic concept is to collect notes as an inputmelody during one loop
and playing the response melody in the following loop. A first algorithm deploys the
pitch-duration model and a second algorithm utilizes the pitch-only model. To explain
the back-end, we introduce the following terminology:

• An Event is triggered by an action from the user or by a timestamp.

• A noteEvent is triggered, if the user activates a note through the UI. The note
stores the pitch of the played note so that it can be appended to the melody list.

• A nextLoopEvent is triggered, when the global timestamp reaches a new loop of
the background music sequence.

• The boolean variable firstNoteEventInLoop evaluates to true, if noteEvent
is the first note event in the current loop and to false otherwise.

• The boolean variable melodyTooShort evaluates to true if the melody’s duration
adds up to the length of one loop or more and to else otherwise.

The following algorithm for computing the response melody collects all of the user input
notes as an inputmelody and calculates a response melody at each nextLoopEvent.
Note that the length of a note in the inputmelody is defined as the difference in
time-steps between two consecutive notes. One time-step is defined as 1/48th of a
whole note to match the note-duration encoding. The length of the final note of the
loop is set to be the difference between the final time-step in the loop and the note’s
trigger event. The function getNoteDurationEncoding is used to combine the user
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inputmelody values with the timestamps for the note-duration encoding of the melody.
The function predictNext triggers the pitch-duration model to predict the next note
from the melody. It internally stores the prediction by adding it to the inputmelody so
that it is ready to predict the next note again. The function play sends the predicted
note to the MIDI sequencer so that it triggered at the right times in the loop.

Algorithm 3: Predicting with the pitch-duration model.
melody = []
timestamps = []
while true :

if noteEvent :
melody.append(note)
timestamps.append(timestamp)

if nextLoopEvent :
timestamps.append(timestamp)
inputmelody = getNoteDurationEncoding(melody,timestamps)
while melodyTooShort :

play(predictNext(inputmelody))

melody = []
timestamps = []

Algorithm 3 predicts a melody at the start of each loop and then plays it. The
length of the melody is tailored to the length of the loop, by producing response notes
until the melody is long enough, i.e. fills the loop. The last note is cut to the right
length.

Ideally, the computation time would be minimal and the response melody could be
played instantly. Unfortunately, a forward pass with the model in Tensorflow.js can
take around 30 milliseconds depending on the hardware. Each forward pass generates
a new note with pitch and duration that can be queued to be played. The generated
note is further appended to the inputmelody for the next forward pass. Thus, multiple
separate forward passes are needed to compute the complete response melody.

The delay that is introduced by the prediction is an issue, because it means we cannot
play a note on the first beat. The best approach to overcome this computation time
issue is to use a faster implementation of the neural network forward pass. Assuming
we cannot decrease computation time, one approach to overcome this problem is to
play only the last part of the response melody after the computation by bypassing the
notes from the response melody that were missed during the computation delay. This
way, the beginning of each loop is silent and the melody response kicks in after the
computation is done. This is not a great solution because the first part of the melody
is left out.
Another approach would be to calculate the response melody before the next loop
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starts by starting to calculate a response before the earlier loop has finished. This
puts inconsistencies into the melody though. If the user still inputs notes after the
prediction has begun, the response melody is only continuing the first part of the user’s
melody. This is not intended in the design of the model as the model is trained to
predict next notes, i.e. continue a melody. However, we can still obtain melodies that
are consonant within the harmonic context from this approach because the background
melody is still enforces harmony.
Changing the usage of the model in this way introduces new possibilities. We

can utilize the pitch-only model for an interesting application in which the duration
prediction is replaced by copying the rhythm of the user’s input.

Algorithm 4: Predicting with the pitch-only model on each noteEvent.
melody = []
predictions = []
timestamps = []
while true :

if noteEvent :
timestamps.append(timestamp)
melody.append(note)
prediction = predictNext(melody)
predictions.append(prediction)

if nextLoopEvent :
playmelody(predictions,timestamps)
melody = []
predictions = []
timestamps = []

Algorithm 4 predicts a next note every time the user inputs a note. During one loop,
the predicted notes and the timestamps of each noteEvent are stored. The function
playmelody now triggers MIDI note events at the saved timestamps from the previous
loop, so that the predicted notes are played back at the same time, as the user played
the notes in the previous loop. A subtlety in this application is that the information
about the chord of the following note in the melody. In contrast, the whole melody of
the previous loop is passed into getNoteDurationEncoding in Algorithm 3. For each
note, the chord of the following note is available and the next chord of the final note in
the melody can be set as the first chord in the loop. We choose to set the next chord
of each note for Algorithm 4 as the following chord in the chord progression.

As stated earlier, the neural network is deterministic, i.e. the prediction is the same
for the same input. In the case of Algorithm 4, the first prediction will always be the
same if the user starts with the same note. Therefore, the generated melodies can
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become repetitive and the application might become dull quite quickly. An adaptation
of the algorithm that waits for a few input notes or a few beats before starting to
predict, is a good way to improve on variation in the generated melodies.
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9 Conclusion and Outlook
This thesis investigated how to model interactive melody generation with Machine
Learning methods. Our approach models melodies in the context of harmony in a similar
way to the staff notation system that is used by musicians. We discussed the differences
between datasets in the MIDI and MusicXML file formats and preprocessed datasets
from both formats to represent them in our melody encoding. Melody generation
was modelled as a sequence classification task with a classifier based on long short-
term memory recurrent neural networks. Different variations of the neural network
were trained with the datasets and evaluated with metrics based on music theoretical
assumptions for consonant melodies. The best model scored 36% test accuracy for
pitch prediction and 59% test accuracy for duration prediction. The evaluation showed
that the models were able to capture musical aspects from the data, such as harmonic
consistency and melodic stability. However, the evaluation also indicated that the
models struggled with creativity. We found that adding tonality information to the
harmonic context did not improve performance by our metrics. Finally, we discussed
different applications of the neural networks in an interactive realtime environment.
Even though the model was designed to be compact, computation time limited the
application of the pitch-duration model. Still, a web application producing harmonically
consistent melodies could be deployed with the pitch-only model.

There are various further extensions to the musicality of our model that should be
investigated. As mentioned in Chapter 2, there are different ways to encode musical
data for a Machine Learning approach. Research has to be done to find out which way
works best and maybe the ideal encoding has yet to be found. Adding information
about the beat-position of the note to the note-duration encoding could improve the
model’s capability of learning rhythms. A factor that plays an important role in music
is dynamics, i.e. loudness between notes. This factor is difficult to incorporate as
our datasets contain inconsistent information about it. It would be interesting to see,
what a Machine Learning model can learn from dynamics information regarding other
aspects of the music. On top of that, our approach only deals with symbolic music
data and a lot more information can be found in audio data. Audio data contains a
vast amount of information so that filtering out the useful parts is a whole challenge in
itself. Additionally, the harmony encoding presented in this thesis only considers the
basic music theoretical concepts of major and minor keys and chords. An extension
would be to integrate more sophisticated musical concepts from fields such as Jazz
music theory. A high quality dataset as well as more detailed metrics for the evaluation
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of the model are needed to make the advanced music theory measurable. It remains to
be investigated whether our models can learn specific styles of music. For this, more
nuanced datasets as well as metrics that can measure attributes of styles are needed.

We believe it is crucial to focus on the music theory based evaluation to improve the
quality of melody generation models. More research has to be done to improve the
measurability of the quality of generative models in fields such as music or art. On
the one hand, the subjective concepts of these fields, such as consonance, need to be
quantified precisely, for example by categorizing different types of styles of melodies
that groups of people can agree on being consonant or dissonant. On the other
hand, theoretical concepts in music theory need to be implemented in a quantifiable
manner. Finally, it would be desirable that the research community agrees on a
well-defined standard of evaluation of melody generation models so that models are
more comparable.
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